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Outline
• Motivations: High Tc oxides, CMR materials…
• d-electrons in transition metal oxides
• Hubbard Model of the t2g electrons
• Novel Hidden Symmetries
• Consequences 

1.  Absence of long-range spin order in the 
Kugel-Khomskii (KK) Hamiltonian

2.  Extraordinary simplifications in numerical 
exact diagonalization studies

3.  Gapless excitation spectrum even with 
spin-orbit interactions



Motivations
High temperature superconductivity and colossal 
magnetoresistance sparked much recent interest in the 
magnetic properties of strongly correlated systems 
(i.e. transition metals),  particularly those with orbital 
degeneracy. 
In most of the transition metal oxides (such as 
LaTiO3), one has to deal with not only the spin degrees 
of freedom but also the orbital degrees of freedom of 
the strongly correlated electrons.
Recent studies indicate that superexchange 
interactions between ions with spin and orbital degrees 
of freedom is a fascinating problem and suggest the 
possibility of exotic ground states with strong 
interplay between spin and orbital sectors.



For an ion with a 
single 3d electron 
the cubic crystal 
field gives rise to a 
two-fold 
degenerate eg and 
a three-fold 
degenerate t2g
manifold. 
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We  first  review  the  case  when  the  on-site  Coulomb  interaction,
U,  is  very  large  and  there  is  one  electron  per  site.

Single-band Hubbard model
Heisenberg Hamiltonian
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Perturbation  processes
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Z  (which  is  an  xy wavefunction)  can  hop  (via
oxygen  ions) to  neighbors  along   either the  x-axis  
or the y-axis, but NOT along  the  z-axis.  The  z-axis is
called  the ``inactive axis’’ for  orbital  ``flavor’’  Z (xy).
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A  Z-flavor orbital  can not  hop  into  a  different
flavor  (here  we  show  Z trying  to  hop into  Y).
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Hubbard Hamiltonian
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KUGEL – KHOMSKII  (1975)

ExchangeDirect

Red  Axis  is  Inactive
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``Inconsistencies between experimental data
and theoretical models need to be resolved.’’

Paraphrasing  a reminiscence of R. Shull concerning
the philosophy of his Nobel  Laureate father.

If experiments agree with the theoretical analysis
of the model,  DO WE DECLARE VICTORY?

Papers appear in PRL that explain properties
Of LaTiO using exactly this model.

Only if both are correct!!



ROTATIONAL   INVARIANCE
If terms are invariant when the coordinate axes
of the spin are rotated, then they are invariant 
when the spin is rotated. (We will obtain a
remarkable spin symmetry.)

Simple example: the number of electrons of a 
given flavor, say X, is the sum of the number
of ``up’’ spins of that flavor plus the number of
``down’’ spins of the flavor.  But the directions
of ``up’’ and ``down’’ don’t matter.
So NX is a rotational invariant.



Hubbard Hamiltonian
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So since N is a rotational invariant, HC is
invariant against rotation of the spin of
α-flavor electrons.

In fancier language:  the operator which rotates
the spin of α-flavor electrons commutes with HC.
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This is also a rotational invariant PROVIDING
we rotate α-flavor electron spins on site i
and those on site j  IN  THE  SAME  WAY.

Now consider

Normally, all sites are coupled, so this means that
rotational invariance only happens when ALL spins
are rotated the same way.  Here due to the inactive
axes, dxy electrons can only hop within an x-y plane,
so we get rotational invariance when we rotate
together all the dxy spins in any single x-y plane
(and similarly for other flavors).



MERMIN-WAGNER  PROOF

In  d=2  dimensions  thermal  excitations  of
spin-waves  destroy  long-range order.
The number of thermal spin excitations is
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This  diverges  for d=2:  the ground
state is unstable to thermal excitation

Can  we trust  this heuristic argument??



MERMIN-WAGNER  PROOF
We have constructed the analogous rigorous proof
that there is no long range spin order in any flavor
orbital at nonzero temperature.  (PRB 69, 035107)

Although each orbital flavor has two dimensional
dynamics, this system is really three dimensional.

It is very unusual for thermal fluctuations to
destroy long-range order in a three dimensional
system.  But it happens for this special model.

Any small deviations from cubic symmetry
invalidate this analysis.



MEAN-FIELD  THEORY

THERE   IS  NO  WAVEVECTOR  SELECTION
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The  spin  susceptibility  for  z-flavor orbitals is

This  has  an  instability  to  order  in  
antiferromagnetic planes  which are  active:
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ROTATIONAL  SYMMETRY

Because  we  have  rotational  invariance
FOR  EACH  FLAVOR  separately

THE TOTAL  SPIN,  AS  WELL  AS  ITS  z-COMPONENT,
FOR EACH FLAVOR,  SUMMED   OVER  ALL  SPINS  IN
THE ACTIVE  PLANE  OF THIS  FLAVOR,  ARE  BOTH
GOOD  QUANTUM  NUMBERS.

The  spin  at  any  given  site  is  the sum  over  the
spins  of  each  orbital  flavor (X,  Y,  and  Z).



Consequences of the Novel Hidden Symmetries 
of t2g Hubbard Hamiltonian
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An  i-j singlet  wavefunction:

The  exact  ground state  is
a  sum  of  16  dimer states,
which  can be obtained from
the dominant  configurations
(c) and  (b)  by  hopping  as
in  panel  (d).

Symmetry  reduces 1.7 million  to  16!!



J = 15.5 meV
Gap = 3.3 meV D = 1.1 meV
Reduced moment = 0.45 µB             ( =  µB for S = ½)

La Ti O3 B.  Keimer et al



``Inconsistencies between experimental data
and theoretical models need to be resolved.’’

Paraphrasing  a reminiscence of R. Shull concerning
the philosophy of his Nobel  Laureate father.

But suppose the experimental measurements are
correct and the theory analysis of the model is
accurate,  but they disagree,  THEN WHAT?

THE  MODEL  IS  WRONG!!



In LaTiO the octahedra
are rotated, so there 
are no inactive axes
and this system is
much like any other
antiferromagnet.

But if a system more closely approximating
the KK model could be fabricated, it would
have very unusual properties: quasi 2d
spin fluctuations, for example.



Almost  any  coupling  will give rise to
wave  vector selection:  if  different
flavors  interact,  they  will  all  want
to  condense  simultaneously,  which
can only  happen at  k = (pi, pi ,pi)/a.

For  instance,  if  one  adds  spin-orbit
Interactions,  then  the  spins  of  all
three  orbital  flavors  simultaneously
condense,  but  the spins of  the
different  flavors  are NOT parallel.
this  might  explain  large  zero-point
spin  deviation.



SPIN-ORBIT  INTERACTIONS

With  spin-orbit  interactions  one  would  think
that  the  spin  knows  where  the  crystal
axes  are  ->  we  expect  anisotropy

WRONG!!
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Consequences of the Novel Hidden Symmetries
of t2g Hubbard Hamiltonian

A global rotation of spins in a plane means that we CAN NOT have a long-
range magnetic ordering at non-zero temperature (see Mermin and Wagner 
(PRL 13,1133,1966)). 

This conclusion also applies to the Kugel-Khomskii Hamiltonian 
which is obtained at second order perturbation (i.e. t2/U):

KK Hamiltonian – contrary to the general belief in the literature -does not 
support 3D magnetic ordering without additional terms such as spin-orbit 
interaction or allowing octahedral rotation!

Inclusion of spin-orbit coupling allows such ordering but even then the 
excitation spectrum is gapless due to a continuous symmetry.

We hope that these results will inspire experimentalists to synthesize 
new t2g oxides with tetragonal or higher symmetry. Such systems would 
have quite striking and anomalous properties.

Therefore a consistent theoretical explanation of a real transition metal 
oxides must include other  terms  to the Hubbard or KK model



It is surprising that the Hubbard model has been widely 
used in the study of transition metal oxides for a long 
time but yet its remarkable symmetry properties were 
missed until now!
Using these symmetries, we rigorously showed that the 
Hubbard model (and also KK model) without spin-orbit 
interaction does not permit the development of long-
range spin order in three dimensional cubic lattice at non 
zero temperature.
Finally,these symmetries reduce 1.7 million by 1.7 million
matrix to 16x16 matrix for a cube of Ti cluster!

For the first-time we uncovered several novel symmetries of 
the Hubbard Hamiltonian for a cubic t2g system.

CONCLUSIONS


